0 D ec 1 99 9 Vortices and invariant surfaces generated

نویسندگان

  • V Grassi
  • R A Leo
  • G Soliani
  • P Tempesta
چکیده

We show that certain infinitesimal operators of the Lie–point symmetries of the incompressible 3D Navier–Stokes equations give rise to vortex solutions with different characteristics. This approach allows an algebraic classification of vortices and throws light on the alignment mechanism between the vorticity → ω and the vortex stretching vector S → ω, where S is the strain matrix. The symmetry algebra associated with the Navier–Stokes equations turns out to be infinite–dimensional. New vortical structures, generalizing in some cases well–known configurations such as, for example, the Burgers and Lundgren solutions, are obtained and discussed in relation to the value of the dynamic angle φ = arctan | → ω ∧S → ω | → ω · → ω. A systematic treatment of the boundary conditions invariant under the symmetry group of the equations under study is also performed, and the corresponding invariant surfaces are recognized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 D ec 1 99 9 In Search of Local Degrees of Freedom in Quadratic Diff - invariant Lagrangians

We show that local diff-invariant free field theories in four spacetime dimensions do not have local degrees of freedom. PACS number(s): 04.20.Cv, 04.20.Fy

متن کامل

ar X iv : h ep - t h / 99 03 11 3 v 3 1 0 D ec 1 99 9 NORDITA - 1999 / 18 HE NBI - HE -

We investigate the relevance of Eisenstein series for representing certain G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. G(Z) may stand for any of the mapping class, T-duality and U-duality groups Sl(d, Z), SO(d, d, Z) or E d+1(d+1) (Z) respectively. Using G(Z)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999